How to fit a multiple linear regression equation in R.
> y=scan() [enter y values]
1: 10
2: 20
3: 50
4: 70
5: 90
6: 100
7: 130
8: 150
9: 155
10: 160
11: 155
12
Read 11 items
> x1=scan() [enter x1values]
1: 50
2: 50
3: 50
4: 51
5: 52
6: 53
7: 54
8: 55
9: 55
10: 56
11: 58
12:
Read 11 items
> x2=scan() [enter x2 values]
1: 1
2: 1.2
3: 1.5
4: 2
5: 2.5
6: 3
7: 3.3
8: 4
9: 6
10: 6.5
11: 7.5
12:
Read 11 items
> df=data.frame(y,x1,x2) [represent data in tabular form]
> df
y x1 x2
1 10 50 1.0
2 20 50 1.2
3 50 50 1.5
4 70 51 2.0
5 90 52 2.5
6 100 53 3.0
7 130 54 3.3
8 150 55 4.0
9 155 55 6.0
10 160 56 6.5
11 155 58 7.5
> cor(df) [get rank correlation coefficient of y on x1 and x2]
y x1 x2
y 1.0000000 0.9350985 0.8942423
x1 0.9350985 1.0000000 0.9617563
x2 0.8942423 0.9617563 1.0000000
> model=lm(y~x1+x2) [to fit regression equation of y on x1 and x2]
> model
Call: [output result]
lm(formula = y ~ x1 + x2)
Coefficients:
(Intercept) x1 x2
-976.197 20.365 -1.682
> y=scan() [enter y values]
1: 10
2: 20
3: 50
4: 70
5: 90
6: 100
7: 130
8: 150
9: 155
10: 160
11: 155
12
Read 11 items
> x1=scan() [enter x1values]
1: 50
2: 50
3: 50
4: 51
5: 52
6: 53
7: 54
8: 55
9: 55
10: 56
11: 58
12:
Read 11 items
> x2=scan() [enter x2 values]
1: 1
2: 1.2
3: 1.5
4: 2
5: 2.5
6: 3
7: 3.3
8: 4
9: 6
10: 6.5
11: 7.5
12:
Read 11 items
> df=data.frame(y,x1,x2) [represent data in tabular form]
> df
y x1 x2
1 10 50 1.0
2 20 50 1.2
3 50 50 1.5
4 70 51 2.0
5 90 52 2.5
6 100 53 3.0
7 130 54 3.3
8 150 55 4.0
9 155 55 6.0
10 160 56 6.5
11 155 58 7.5
> cor(df) [get rank correlation coefficient of y on x1 and x2]
y x1 x2
y 1.0000000 0.9350985 0.8942423
x1 0.9350985 1.0000000 0.9617563
x2 0.8942423 0.9617563 1.0000000
> model=lm(y~x1+x2) [to fit regression equation of y on x1 and x2]
> model
Call: [output result]
lm(formula = y ~ x1 + x2)
Coefficients:
(Intercept) x1 x2
-976.197 20.365 -1.682
No comments:
Post a Comment