Showing posts with label regression line. Show all posts
Showing posts with label regression line. Show all posts

Friday, 22 May 2015

How to find covariance, correlation coefficient, spearman's coefficient, regression line, estimated value, residual value for data stored in x, y.

> x=scan()    [enter x data]
1: 56
2: 47
3: 33
4: 39
5: 42
6: 38
7: 46
8: 47
9: 38
10: 32
11:
Read 10 items
> y=scan()         []enter y data]
1: 56
2: 83
3: 49
4: 52
5: 65
6: 52
7: 56
8: 48
9: 59
10: 70
11:
Read 10 items

> cov(x,y)        [to get covariance of x, y]
[1] 4.444444

> cor(x,y)           [to get correlation coefficient]
[1] 0.05560642
> cor(x,y,method="spearman")   [to get spearman's coefficient]
[1] -0.003067485
> model=lm(y~x)      [to fit regression equation]
> model

Call:                                         [result output]
lm(formula = y ~ x)

Coefficients:
(Intercept)            x 
   55.54260      0.08271 


> plot(x,y,col="red")            [plot x, y points]    
> abline(model,h=0,v=0,col="blue")  [plot regression line]
> model$fitted[6]                     [to get fitted value]
       6
58.68569
> model$residuals[6]                [to get residual value]
        6
-6.685691